Skip to main content

Linux process management in foreground background


http://stackoverflow.com/questions/9190151/how-to-run-a-shell-script-in-the-backgroung-and-get-no-output

http://linuxg.net/how-to-manage-background-and-foreground-processes/

http://unix.stackexchange.com/questions/45025/how-to-suspend-and-bring-a-background-process-to-foreground


How to run a job in background
======================

nohup /path/to/your/script.sh > /dev/null 2>&1 &


How to view background process
======================
 
jobs



How to move job from foreground to background and vice versa
=======================================

fg %jobid

bg %jobid

How to kill background jobs
======================

 
kill -19 %job_id





Comments

Popular posts from this blog

R tutorial

Install R in linux ============ In CRAN home page, the latest version is not available. So, in fedora, Open the terminal yum list R  --> To check the latest available version of r yum install R --> install R version yum update R --> update current version to latest one 0 find help ============ ?exact topic name (  i.e.   ?mean ) 0.0 INSTALL 3rd party package  ==================== install.packages('mvtnorm' , dependencies = TRUE , lib='/home/alamt/myRlibrary/')   #  install new package BED file parsing (Always use read.delim it is the best) library(MASS) #library(ggplot2) dirRoot="D:/research/F5shortRNA/TestRIKEN/Rscripts/" dirData="D:/research/F5shortRNA/TestRIKEN/" setwd(dirRoot) getwd() myBed="test.bed" fnmBed=paste(dirData, myBed, sep="") # ccdsHh19.bed   tmp.bed ## Read bed use read.delim - it is the  best mybed=read.delim(fnmBed, header = FALSE, sep = "\t", quote = ...

MATLAB cross validation

// use built-in function samplesize = size( matrix , 1); c = cvpartition(samplesize,  'kfold' , k); % return the indexes on each fold ///// output in matlab console K-fold cross validation partition              N: 10    NumTestSets: 4      TrainSize: 8  7  7  8       TestSize: 2  3  3  2 ////////////////////// for i=1 : k    trainIdxs = find(training(c,i) ); %training(c,i);  // 1 means in train , 0 means in test    testInxs  = find(test(c,i)       ); % test(c,i);       // 1 means in test , 0 means in train    trainMatrix = matrix (  matrix(trainIdxs ), : );    testMatrix  = matrix (  matrix(testIdxs  ), : ); end //// now calculate performance %%  calculate performance of a partiti...

MATLAB optimization toolbox usage with genetic algorithm

Useful tutorial http://www.mathworks.com/products/global-optimization/description3.html Best example of implementatoin with Constraint, objective function http://www.mathworks.com/help/gads/examples/constrained-minimization-using-the-genetic-algorithm.html More about how to use multi-objective http://www.mathworks.com/discovery/multiobjective-optimization.html http://www.mathworks.com/help/gads/examples/performing-a-multiobjective-optimization-using-the-genetic-algorithm.html http://www.mathworks.com/help/gads/examples/multiobjective-genetic-algorithm-options.html Example GAMULTOBJ (can handle Multiple Objective)  GA(can handle 1 objective) Constrained Minimization Problem We want to minimize a simple fitness function of two variables x1 and x2 min f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2; x min f(x) = 100 * (x1^2 + x2) ^2 + (1 + x1)^2; x such that the following two nonlinear constraints and bounds are satisfied x1*x2 + x1 - x2 + 1.5 <...