Skip to main content

MATLAB normalize train and test



matrixTrain = load('matrix.train');
 function [matrixTrain , meanFeatIn, stdDevFeatIn] = mynorm_train(matrixTrain)


featureIn = matrixTrain(:,1:end-1);
featureOut = matrixTrain(:,end);

meanFeatIn = mean(featureIn,1);
stdDevFeatIn = std(featureIn,1,1);
meanFeatOut = mean(featureOut,1);
stdDevFeatOut = std(featureOut,1,1) ; 
dlmwrite('normInfo',[meanFeatOut stdDevFeatOut],'delimiter','\t');
noSample = size(featureIn,1);
 for i=1:noSample
            featureIn(i,:) = (featureIn(i,:) - meanFeatIn) ./ stdDevFeatIn ;
            featureOut(i,:) = (featureOut(i,:) - meanFeatOut) ./ stdDevFeatOut ;
 end
matrixTrain = [ featureIn featureOut];

end

matrixTest = load('matrix.test');
function [matrixTest] = mynorm_train(matrixTest,meanFeatIn, stdDevFeatIn,meanFeatOut ,stdDevFeatOut )

noSample = size(matrixTest,1);
noInputFeat = size(matrixTest,2) - 1;
for i=1:noSample
            matrixTest(i,1:noInputFeat) = (matrixTest(i,1:noInputFeat) - meanFeatIn )  ./ stdDevFeatIn ;
            matrixTest(i,noInputFeat+1) = (matrixTest(i,noInputFeat+1) - meanFeatOut )  ./ stdDevFeatOut ;  
end  






Comments

Popular posts from this blog

MATLAB cross validation

// use built-in function samplesize = size( matrix , 1); c = cvpartition(samplesize,  'kfold' , k); % return the indexes on each fold ///// output in matlab console K-fold cross validation partition              N: 10    NumTestSets: 4      TrainSize: 8  7  7  8       TestSize: 2  3  3  2 ////////////////////// for i=1 : k    trainIdxs = find(training(c,i) ); %training(c,i);  // 1 means in train , 0 means in test    testInxs  = find(test(c,i)       ); % test(c,i);       // 1 means in test , 0 means in train    trainMatrix = matrix (  matrix(trainIdxs ), : );    testMatrix  = matrix (  matrix(testIdxs  ), : ); end //// now calculate performance %%  calculate performance of a partiti...

SLURM tutorial : Basic commands

Main website for learning SLRUM http://slurm.schedmd.com/tutorials.html Submit a job with name and outputfile name(This will overwrite the parameters in shell file header ) sbatch   -J   job1  -o   job1.out  --partition=batch    myscript.sh   Basic shell script for job #!/bin/sh # #SBATCH --job-name=testJob #SBATCH --time=01:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --partition=dragon-default # # Display all variables set by slurm env | grep "^SLURM" | sort # cd /projects/dragon/FANTOM5/processed_data_feature ## All my commands for job will go here date;time; mkdir t1 How to submit a batch job sbatch myscript.sh How to check the list of jobs of a user squeue -u user1 squeue -u user1 -l # it will show in details   How to check the whole history and status of a job   scontrol show job=JOBID   How to use one particular node in interactive mode. Useful when all...

MATLAB optimization toolbox usage with genetic algorithm

Useful tutorial http://www.mathworks.com/products/global-optimization/description3.html Best example of implementatoin with Constraint, objective function http://www.mathworks.com/help/gads/examples/constrained-minimization-using-the-genetic-algorithm.html More about how to use multi-objective http://www.mathworks.com/discovery/multiobjective-optimization.html http://www.mathworks.com/help/gads/examples/performing-a-multiobjective-optimization-using-the-genetic-algorithm.html http://www.mathworks.com/help/gads/examples/multiobjective-genetic-algorithm-options.html Example GAMULTOBJ (can handle Multiple Objective)  GA(can handle 1 objective) Constrained Minimization Problem We want to minimize a simple fitness function of two variables x1 and x2 min f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2; x min f(x) = 100 * (x1^2 + x2) ^2 + (1 + x1)^2; x such that the following two nonlinear constraints and bounds are satisfied x1*x2 + x1 - x2 + 1.5 <...