Using meand stddev function [featureIn,meanFeatIn, stdDevFeatIn] = mynorm_train(featureIn) meanFeatIn = mean(featureIn,1); stdDevFeatIn = std(featureIn,1,1); noSample = size(featureIn,1); for i=1:noSample featureIn(i,:) = (featureIn(i,:) - meanFeatIn) ./ stdDevFeatIn ; end end function [testFeatureIn] = mynorm_test(testFeatureIn,meanFeatIn,stdDevFeatIn) noSample = size(testFeatureIn,1); noInputFeat = size(testFeatureIn,2); for i=1:noSample testFeatureIn(i,1:noInputFeat) = (testFeatureIn(i,1:noInputFeat) - meanFeatIn ) ./ stdDevFeatIn; end end Using range function [ N_feature,feature_range,feature_bases ] = normalize( features ) %NORMALIZE Summary of this function goes here % Detailed explanation go...