Using meand stddev    function [featureIn,meanFeatIn, stdDevFeatIn] =  mynorm_train(featureIn)  meanFeatIn = mean(featureIn,1);  stdDevFeatIn = std(featureIn,1,1);  noSample = size(featureIn,1);  for i=1:noSample      featureIn(i,:) = (featureIn(i,:) - meanFeatIn) ./ stdDevFeatIn ;  end  end    function [testFeatureIn] = mynorm_test(testFeatureIn,meanFeatIn,stdDevFeatIn)      noSample = size(testFeatureIn,1);      noInputFeat = size(testFeatureIn,2);      for i=1:noSample              testFeatureIn(i,1:noInputFeat) = (testFeatureIn(i,1:noInputFeat) - meanFeatIn ) ./ stdDevFeatIn;                end    end       Using range    function [ N_feature,feature_range,feature_bases ] = normalize( features )  %NORMALIZE Summary of this function goes here  %   Detailed explanation go...