Skip to main content

matlab feature ranking

used function rankfeatures (consider sample as column)
====================================================

train = [trainFeature trainLabel];
[IDX ,Z] = rankfeatures(trainFeature' ,trainLabel' ,'Criterion', 'ttest');
%ttest / entropy/ etc...



topRankedFeature = (size(trainLabel,1)) / 2 ; 

classify( testFeature( :,IDX(1:topRankedFeature) ),   ...
          trainFeature( :,IDX(1:topRankedFeature) ), trainLabel, ...     'diagquadratic' ) % liner/quadratic/diagquadratic etc


% transpose as it takes sample as column vector
%ttest / entropy/ etc...  
%IDX is the list of indices to the rows in X with the most significant features.  
%Z is the absolute value of the criterion used (see below) 


 

Comments

Popular posts from this blog

R tutorial

Install R in linux ============ In CRAN home page, the latest version is not available. So, in fedora, Open the terminal yum list R  --> To check the latest available version of r yum install R --> install R version yum update R --> update current version to latest one 0 find help ============ ?exact topic name (  i.e.   ?mean ) 0.0 INSTALL 3rd party package  ==================== install.packages('mvtnorm' , dependencies = TRUE , lib='/home/alamt/myRlibrary/')   #  install new package BED file parsing (Always use read.delim it is the best) library(MASS) #library(ggplot2) dirRoot="D:/research/F5shortRNA/TestRIKEN/Rscripts/" dirData="D:/research/F5shortRNA/TestRIKEN/" setwd(dirRoot) getwd() myBed="test.bed" fnmBed=paste(dirData, myBed, sep="") # ccdsHh19.bed   tmp.bed ## Read bed use read.delim - it is the  best mybed=read.delim(fnmBed, header = FALSE, sep = "\t", quote = ...

MATLAB cross validation

// use built-in function samplesize = size( matrix , 1); c = cvpartition(samplesize,  'kfold' , k); % return the indexes on each fold ///// output in matlab console K-fold cross validation partition              N: 10    NumTestSets: 4      TrainSize: 8  7  7  8       TestSize: 2  3  3  2 ////////////////////// for i=1 : k    trainIdxs = find(training(c,i) ); %training(c,i);  // 1 means in train , 0 means in test    testInxs  = find(test(c,i)       ); % test(c,i);       // 1 means in test , 0 means in train    trainMatrix = matrix (  matrix(trainIdxs ), : );    testMatrix  = matrix (  matrix(testIdxs  ), : ); end //// now calculate performance %%  calculate performance of a partiti...

Linux Tips and Tricks

Collected from CBRC wiki: Original source: http://dragon.cbrc.kaust.edu.sa/wiki/index.php/Linux_Tips_and_Tricks Linux Tips and Tricks Jump to: navigation , search Contents 1 Useful commands 1.1 General commands 1.2 Directories processing 1.3 Files processing 1.4 Find/Replace 1.5 Processes 2 File System /Disk Management 2.1 Disk space report 2.2 Resizing Shared Memory (/dev/shm) 2.3 Resizing partitions CentOS 2.4 Disk crash recovery 2.5 Mounting WebDAV Share 2.5.1 Installing and configuring WebDAV for non-sudo on Ubuntu Useful commands General commands find Linux version $ cat / etc / issue Directories processing $ # recursively delete backup files $ find . / -name '*~' | xargs rm   $ # Process all files in a directory $ ls dir_path /* .xml | xargs -n 1 MyProcessingProgram   $ # gzip/guznip directory: $ tar czvf myfile.tar.gz mydir /* $ tar xzvf filename.tar.gz ( or: tar x...